A Computational Method for Sensitivity Analysis under Uncertainty
نویسنده
چکیده
Sensitivity analysis (SA) is an important part in engineering design under the uncertainty to provide valuable information about the probabilistic characteristics of a response. In this paper, the variance-based methods and the cumulative distribution function (CDF)-based sensitivity coefficients were used in sensitivity analysis. The combination of sparse grid stochastic collocation (SC) and the generalized polynomial chaos (gPC) are proposed as a method to perform the sensitivity analysis. The computational method employs the gPC as a high-order representation for random quantities, a stochastic collocation (SC) approach to deal with complex/implicit response functions, and sparse grid to use a reduced set of samples. It can reduce the computational cost associated with uncertainty assessment without much sacrifice on the optimum solution. The effectiveness is demonstrated in two numerical examples. KeywordsGeneralized Polynomial Chaos; Sensitivity Analysis; Stochastic Collocation; Sensitivity Coefficient; Uncertainty
منابع مشابه
A computational method to analyze the similarity of biological sequences under uncertainty
In this paper, we propose a new method to analyze the difference and similarity of biological sequences, based on the fuzzy sets theory. Considering the sequence order and some chemical and structural properties, we present a computational method to cluster the biological sequences. By some examples, we show that the new method is relatively easy and we are able to compare the sequences of arbi...
متن کاملRobustness-based portfolio optimization under epistemic uncertainty
In this paper, we propose formulations and algorithms for robust portfolio optimization under both aleatory uncertainty (i.e., natural variability) and epistemic uncertainty (i.e., imprecise probabilistic information) arising from interval data. Epistemic uncertainty is represented using two approaches: (1) moment bounding approach and (2) likelihood-based approach. This paper first proposes a ...
متن کاملUncertainty Quantification and Global Sensitivity Analysis for Hypersonic Aerothermoelastic Analysis
A novel parameterized model for temperature distribution is proposed. A framework for uncertainty quantification and global sensitivity in hypersonic aerothermoelastic analysis is developed based on this model. The uncertainty quantification and global sensitivity analysis in hypersonic aerothermoelastic analysis for control surface due to hypersonic aerothermodynamics is investigated in this s...
متن کاملAnalytical metamodel-based global sensitivity analysis and uncertainty propagation for robust design
Metamodeling approach has been widely used due to the high computational cost of using high-fidelity simulations in engineering design. Interpretation of metamodels for the purpose of design, especially design under uncertainty, becomes important. The computational expenses associated with metamodels and the random errors introduced by sample-based methods require the development of analytical ...
متن کاملA novel risk-based analysis for the production system under epistemic uncertainty
Risk analysis of production system, while the actual and appropriate data is not available, will cause wrong system parameters prediction and wrong decision making. In uncertainty condition, there are no appropriate measures for decision making. In epistemic uncertainty, we are confronted by the lack of data. Therefore, in calculating the system risk, we encounter vagueness that we have to use ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015